A NOVEL, C8 DICHLORODIENOL METABOLITE OF THE RED ALGA PLOCAMIUM CRUCIFERUM

J. W. Blunt, M. P. Hartshorn, M.H.G. Munro* and S. C. Yorke

Chemistry Department, University of Canterbury, Christchurch, New Zealand.

A rich assortment of cyclic and acyclic polyhalogenated monoterpenes have been isolated from several species of the family <u>Plocamiaceae</u>.¹ In complete contrast to these previous observations we now report the isolation and characterisation of an eight carbon halogenated alcohol as the major metabolite from <u>Plocamium cruciferum</u>.

<u>P. cruciferum</u> (Hook and Harv.) was collected subtidally near Kaikoura, N.Z.² Chromatography of the methanol extract on "Florisil" gave the unsaturated alcohol (1) (2% of dry weight). The dienol (1) was isolated as a mobile oil ($[\alpha]_{\rm D} = -9.8^{\circ}$, c = 0.01, CHCl₃; ir 3400, 1670, 800 cm⁻¹; uv (ethanol) end absorption only). Chemical-ionization mass spectrometry (CI/MS)^{3a} gave a quasi-molecular ion triplet (9:6:1) as the base peak at 195/197/199 and the molecular formula of $C_{\rm 8H_{12}OCl_{2}}^{35}$ was found by high resolution EI/MS^{3b} and confirmed by micro-analysis. The ¹³C-NMR spectrum^{3c} indicated the presence of two trisubstituted double bonds, which taken in conjunction with the molecular formula required an acyclic skeleton.

Carbon No.	¹³ c5, ppm	multiplicity ^a	¹ J _{CH} (Hz) ^b	3 _{JCH} (Hz) ^b	Ήδ, ppm	multiplicity	J (Hz) ^b
1	115.2	đ	195.4		6.02	a	1.8
2	139.9						
3	73.8	đ	147.9	2.8(C3,CH3)	4.08	đ	6.0
				3.1(с ₃ ,н ₁)			
4	34.4	t	128.8		2.04	t (overlapping d's)	6.0,7.0
5	120.8	a	156.3		5.04	đt	7.0,1.5
6	132.3	8					
7	26.1	q	129.0	4.1(C7,H5)	2.13	đ	1.5
8	12.3	q	128.4	6.2(C ₈ ,H ₁)	1.78	đ	1.8
hydroxyl proton					2.52	•	exchanges with D_2^0

Multiplicity values as determined by SFORD; ^bJ's are based on first order analysis, error ±0.2 Hz.

The connectivity of (1) was established by consideration of both the ¹H- and ¹³C-NMR data (Table). In addition to the four olefinic carbons there were two methyl, one methylene and one carbinol carbons present. One of the chlorine atoms was connected to a methine vinyl carbon $\binom{1}{J_{CH}} = 195$ Hz) while the other chlorine atom could only be bonded to a fully substituted vinyl carbon as the remaining ¹J_{CH} values were too small for carbons bearing a chloro substituent.^{4,5} Specific proton decoupling the ¹³C-NMR spectrum allowed a full assignment of proton and carbon relationships. Double irradiation ¹H-NMR experiments established the isolated partial sequences $-CH=C(CH_3)-$ and $-(CH_3)C=CH-CH_2-CH(OH)-$ allowing assignment of the structure of the dienol as (1). The mass spectral fragmentation pattern is in keeping with this structural assignment (see Scheme)

 $C_8H_{10}CI_2^+$ m/e 176,178,180. The stereochemistry of each of the trisubstituted olefins was deduced from an analysis of the vicinal ¹³C-H coupling constants. In the fully coupled ¹³C-NMR spectrum of the dienol the C₈ methyl quartet was further split into a doublet of doublets by vicinal ¹³C-H couplings (6.2Hz, 2.8Hz) between C₈ and the protons at C₁ and C₃, while the C₃ carbinol doublet peaks were broad (W₁ 15Hz). Specific proton decoupling at the C₁ olefinic proton frequency (δ 6.02) removed the 6.2Hz ${}^{3}J_{C_{8}H}$ coupling to C₈ and only slightly sharpened the C₃ doublet peaks implying a vicinal coupling to C₃ of <3Hz. As ${}^{3}C_{8}H$ is greater than ${}^{3}J_{C_{3}H}$, the C₈ carbon is therefore trans to the olefinic proton while C₃ is cis, allowing assignment of the 1,2-double bond stereochemistry as (1E).^{6,7}

Specific irradiation at the other olefinic proton frequency (δ 5.40) was unnecessary as C₇ exhibited long-range coupling to only one proton. (${}^{3}J_{C_{7}H} = 4.1$ Hz). As it was not possible in this case to extract both <u>cis</u> and <u>trans</u> vicinal coupling constants, this coupling was compared with values from model compounds (for example (2))⁶ and assigned as <u>cis</u>.

Substitution of an alkyl substituent for H_B would tend to increase the magnitude of ${}^{3}_{CH}^{cis}$, while decreasing ${}^{3}_{CH}_{CH}$, but with the ratio J^{trans}/J^{cis} remaining greater than one.⁶ This therefore establishes the observed 4.1Hz coupling as <u>cis</u> and the 5,6-double bond stereochemistry as being (Z).

These configurations (lE, 5Z) were substantiated by 1 H- and 13 C-NMR chemical shift calculations, 8 and on comparison of the various 1 J_{CH} values with model compounds. 5

There are at least two schemes that could account for the skeleton of the dienol (1) being of monoterpenoid origin - either by loss of two C_1 units from (3), or by loss of a C_2 unit from (4). An isoprenoid origin for (1) is also favoured by the co-occurrence with the dienol, as shown by gc/ms, of a variety of halogenated C_{10} compounds in the algal extract.

The dichlorodienol was not an effective antibiotic against Bacillus subtilis.

<u>Acknowledgements</u>: We wish to thank the Zoology Department, University of Canterbury for use of the facilities at the Edward Percival Marine Research Station, Kaikoura; Dr M. J. Parsons, DSIR, Lincoln for alga identification and Professor W. E. Harvey, Victoria University of Wellington for GC/MS data and CI/MS measurements.

Notes and References

- 1. Crews, P., Kho-Wiseman, E. and Montana, P., J. Org. Chem., <u>43</u>, (1978), 116 and references cited therein.
- 2. By scuba-diving at Barneys Rock, Rosy Morn, near Kaikoura, March, 1976.
- 3. (a) VG Micromass-12F (b) AEI-MS902 (c) Varian CFT20.
- 4. Stothers, J. B., "Carbon-13 NMR Spectroscopy", Academic Press, New York, 1972, Chapter 10.
- Chukovskaya, E. C., Dostovalova, V., Vasil'eva, T. and Friedlina, R., Org. Mag. Res., <u>8</u> (1976), 229.
- 6. Vogeli, U. and von Philipsborn, W., Org. Mag. Res., 7 (1975), 617.
- 7. Anderson, J. E., Tetrahedron Lett., (1975), 4079.
- 8. Tobey, S. W., J. Org. Chem., 34, (1969), 1281.

Received in UK 24 August 1978)